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Abstract

We use exact methods to derive an interface model from an underlying microscopic

model, i.e., the Ising model on a square lattice. At the wetting transition in the

two-dimensional Ising model the long Peierls contour (or interface) gets depinned

from the substrate. Using exact transfer-matrix methods, we find that on sufficient-

ly large length scales (i.e., length scales sufficiently larger than the bulk correlation

length) the distribution of the long contour is given by a unique probability measure

corresponding to a continuous “interface model”. The interface binding “potential”

is a Dirac delta function with support on the substrate and therefore a distribution

rather than a function. More precisely, critical wetting in the two-dimensional Ising

model, viewed on length scales sufficiently larger than the bulk correlation length,

is described by a reflected Brownian motion with a Dirac δ perturbation on the sub-

strate so that exactly at the wetting transition the substrate is a perfectly reflecting

surface, otherwise there exists a δ perturbation. A lattice solid-on-solid model was

found to give identical results (albeit with modified parameters) on length scales

sufficiently larger than the lattice spacing, thus demonstrating the universality of

the continuous interface model.

KEY WORDS: critical wetting; exact results; interface models; Ising models; solid-

on-solid models.
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1 Introduction

The modern theory of wetting, viewed as a bona fide thermodynamical phase transi-

tion, was initiated by Cahn [1] who provided a mean-field description from Landau

theory. This was later developed more extensively by Nakanishi and Fisher [2].

Abraham [3] analysed the wetting transition in a two-dimensional Ising model us-

ing exact methods and found behaviour close to the critical wetting temperature,

Tw, very different from that predicted by mean-field theory. Although these studies

included the “bulk” degrees of freedom, it quickly became apparent that signifi-

cant progress in describing wetting in three-dimensional systems beyond mean-field

theory was most likely to be achieved through the use of interface models [4] – [10].

The basic idea behind the interfacial description is to coarse-grain to sufficiently

large length scales, such as the bulk correlation length, ξb, so that the only fluctuating

degrees of freedom left are the heights of the wetting interface, y(x) ≥ 0, above

points x in the substrate S ⊂ Rd−1 (d is the bulk dimension). One then arrives at

an effective Hamiltonian, Heff [y], usually given as

Heff [y] =
∫
S
dx

[
1

2
τ̃ |∇y|2 + V (y)

]
(1)

where τ̃ is the interfacial stiffness. Throughtout this paper we shall only be consid-

ering systems with short-ranged forces and for these the interfacial potential, V (y),

was originally given the form [4, 5],

V (y) = v1(T ) e−y/ξb + v2 e
−2y/ξb + . . . (2)

where v2 is positive and usually taken to be independent of temperature T and

v1(T ) ∝ T − Tmf
w with Tmf

w being the critical wetting temperature as determined by

mean-field theory. More systematic approaches starting from an underlying Landau-

Ginzburg-Wilson Hamiltonian followed [8, 9] which led to V (y) given by (2) but with
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prefactors polynomial in y preceding the exponentials. These studies also opened

up the possibility of a y-dependent stiffness τ̃ . In any case, the partitition function,

ZS, is given by the functional integral

ZS =
∏
x∈S

∫ ∞

0
dy(x) e−Heff [y] (3)

but it should be stressed that this is only a formal expression, whose precise mathe-

matical meaning is unclear, and contained within it is some lower-length cut-off. A

description of critical wetting which goes beyond mean-field theory is then obtained

by applying “functional renormalization group” methods [6, 7, 8, 10] — mean-field

theory follows from minimizing Heff [y]. The following questions concerning interface

models come to mind.

(1) Does any of this make sense mathematically and can such interface models be

derived using exact methods? Previous derivations, although careful, are somewhat

heuristic and essentially mean-field in character. A more rigorous approach would

be desirable.

(2) What length scales are they valid for? In order to “smear out” bulk fluctua-

tions one would have thought it necessary to coarse grain to a scale of at least the

bulk correlation length, ξb, which would then serve as a lower-length “cut-off” to

the functional integrals. At the same time, ξb appears explicitly in the expression

for V (y) as given by Eq. (2) and thus determines the range at which V (y) acts — a

range that is no bigger than the cut-off scale.

(3) How much information is contained in these models? For instance, can

interface models determine the critical properties of correlation functions as well as

thermodynamic singularites for critical wetting?

In this paper, we attempt to answer these questions on a more rigorous footing

through an exact analysis of a two-dimensional Ising model. For comparison, we

also give analogous results for a lattice solid-on-solid (SOS) model (also in bulk two
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dimensions). Roughly speaking, our main result is that, provided one coarse grains

to length scales sufficiently larger than ξb, a “continuous” interface model similar

to the above does indeed describe critical wetting except that in our case we find

that the “interface potential” is given by V (y) = c δ0(y) where δ0(·) is the Dirac

delta distribution supported on {0} and c depends on temperature and the various

microscopic parameters of the underlying model. Furthermore, c > 0 (i.e., repulsive

substrate) when T > Tw; c < 0 (attractive substrate) when T < Tw; and c = 0 when

T = Tw.

In Section 2 we describe the microscopic models considered and in Section 3

present the resulting interface model that these limit to in a more precise form.

A brief outline of the methodology used to get this result is laid out in Section 4.

Further details of some of this analysis are given elsewhere [11]. Finally, we finish

with some conclusions in Section 5.

2 Microscopic Models

2.1 Two-Dimensional Ising Model

Ising spins, σm,n = ±1, are placed on sites (m,n) (1 ≤ m ≤ M , 0 ≤ n ≤ N) of

a square lattice Λ ⊂ Z2 wrapped on a cylinder of height N + 1 and circumference

M (i.e., periodic boundary conditions in the m direction). The top of the cylinder

(n = N) may be left free. Following Abraham [3], two types of boundary conditions

are imposed at the bottom of the cylinder (n = 0). In Case A one fixes σm,0 = +1

for all 1 ≤ m ≤ M ; for Case B, σm,0 = −1 for 1 ≤ m ≤ x and σm,0 = +1 for

x + 1 ≤ m ≤ M . The spins interact ferromagnetically across nearest neighbours

according to the following Hamiltonian

HΛ(σ)/kBT = −
M∑

m=1

(
K1

N−1∑
n=1

σm,nσm,n+1 + K2

N∑
n=1

σm,nσm+1,n + h1σm,0σm,1

)
. (4)
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Note that, since σm,0 is held fixed for all m, h1 acts like a surface field on the row of

spins at n = 1. The boundary condition B induces a long Peierls contour (i.e., the

interface) joining (1
2
, 1

2
) to (x + 1

2
, 1

2
) on the dual lattice which is absent in Case A.

On defining

w := e2K2(cosh 2K1 − cosh 2h1)/ sinh 2K1, (5)

Abraham [3] showed that, after taking the limits M → ∞, N → ∞ and x → ∞ in

that order, a wetting transition occurs in Case B at w = 1 with the interface being

pinned (respectively de-pinned) when w > 1 (respectively w < 1). This wetting

transition will show up thermodynamically as a singularity in the incremental free

energy, τ×, defined as

τ× := − lim
x→∞ lim

N→∞
lim

M→∞
1

x
ln
[
ZB/ZA] (6)

where Zb is the canonical partition function for Case b = A, B.

2.2 Solid-On-Solid Model

We consider the lattice model for an interface as introduced by Abraham and Smith

[12]. The interfacial configurations consist of random “histograms” denoted by the

Markov random field Y = (Yj)
x
j=0 where Yj ∈ [0,∞) is the height of the interface

above the substrate at the lattice point j. The Gibbs measure for this system, Qx(·),
is then given by

Qx(Y ∈ dy) =
1

Zx
exp


−κ

x∑
j=1

|yj − yj−1|



x−1∏
j=1

(1 + a δ0)(dyj)


 δ0(dy0) δ0(dyx) (7)

where δ0(dyj) = δ0(yj)dyj denotes the Dirac measure at 0 and Zx is the canonical

partition function defined so that Qx(·) normalizes to 1. The tendency of the sub-

strate to pin the interface increases with a. It was shown [12] that, in the limit

x → ∞, a wetting transition occurs at a = 1/κ with the interface being pinned

(repectively de-pinned) for a > 1/κ (respectively a < 1/κ).
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3 Main Results

The main purpose of this paper is determine from both lattice models of the previ-

ous section the probability distribution of the interface on length scales sufficiently

large that the interface can be viewed as a continuous object, i.e., a path as a func-

tion on a continuous set. It is in this sense that we can talk about “continuous

interface models”. Thus, regarding the direction parallel to the substrate (x and s)

as “time-like” and the height of interface above the substrate (y and Ys) as “space-

like”, the Ising and SOS interface on a sufficiently large length scale will be treated

as a continuous-time Markov stochastic process (Ys)s∈[0,x] with Y0 = Yx = 0. In

Subsection 3.1 the probability measure, Pc
x, for (Ys)s∈[0,x] will be presented and this

will provide a more mathematically precise description of the emergent continuous

interface model but first we need to define some of the quantities which enter Pc
x.

Consider the tied-down Brownian motion (Bs)s∈[x1,x2] on R with Bx1 = y1, Bx2 =

y2 [13] (this is sometimes called a Brownian bridge). Let the Brownian motion have

diffusion constant 1/2τ̃ . Its conditional probability measure, ν
(x2,y2)
(x1,y1)

, is the extension

of the finite-dimensional distributions on Rn given as

ν
(x2,y2)
(x1,y1)

(R[x1,x2]|Bs1 ∈ db1, . . . , Bsn ∈ dbn) (8)

=
g(s1 − x1; b1 − y1)g(x2 − sn; y2 − bn) db1

g(x2 − x1; y2 − y1)

n∏
j=2

g(sj − sj−1; bj − bj−1) dbj

where x1 < s1 < . . . < sn < x2 and g(x; y) is the Gauss kernel

g(x; y) =
(

τ̃

2πx

)1/2

e−τ̃ y2/2x. (9)

Now, tied-down reflected Brownian motion (reflected off y = 0) is defined by the

process (|Bs|)s∈[x1,x2]
[13] which is assigned a conditional measure µ

(x2,y2)
(x1,y1)

with the

normalization
∫
dµ

(x2,y2)
(x1,y1)

= g− + g+ with g± = g(x2 − x1; y2 ± y1). The probability

measure Pc
x for (Ys)s∈[0,x] will be defined in terms of µ

(x,0)
(0,0) .
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3.1 Exact Continuous Interface Model

Recall that the height of wetting interface on a large length scale is represented

by the stochastic process (Ys ∈ [0,∞))s∈[0,x]. It can be shown that, for both the

Ising and SOS models, its probability measure Pc
x on the infinite-dimensional space

Ωx = [0,∞)[0,x] is given by

Pc
x(·) =

1

Zx(c)
e−2cLxµ

(x,0)
(0,0)(·) (10)

where the partition function, Zx(c), is the following path integral

Zx(c) =
∫

dµ
(x,0)
(0,0)e

−2cLx . (11)

The random variable Lx is the Brownian “local time” [13] defined by

Lx := lim
ε↓0

1

4ε
meas{0 ≤ s ≤ x : Ys ≤ ε} (12)

where meas{·} denotes the Lebesgue measure. Thus, Lx provides a measure of the

amount of interface staying close to the substrate and formally it can be expressed

in terms of the δ distribution as

2Lx =
∫ x

0
δ0(Ys) ds. (13)

The incremental free energy (which for the Ising model is defined by (6)) is now

given by

τ×(c) − τ = − lim
x→∞

1

x
lnZx(c) (14)

where τ is the interfacial tension for a free interface.

The measure Pc
x contains two parameters dependent on the underlying mi-

croscopic models; the interfacial stiffness τ̃ (which incorporates lattice anisotropy

[14, 15]) entering as the diffusion constant in µ
(x,0)
(0.0) and c. These are given as

τ̃ =

{
sinh 2K∗

1 sinh 2K2 sinh τ , Ising model;
1
2
κ2 , SOS model

(15)
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where the Ising interfacial tension τ is given by τ = 2(K1 −K∗
2 ), e

−2K∗
j = tanhKj

and

c =

{
(1 − w)/2τ̃ , Ising model;
1
κ
− a , SOS model

(16)

recalling that w is given by (5).

The wetting transition occurs at c = 0 and the substrate is wet (respectively

nonwet) when c > 0 (respectively c < 0). It should be stressed that the process

(Ys)s∈[0,x] with Pc
x provides an (asymptotically) exact description of the interface

only on sufficiently large length scales. For the Ising model one requires that length

scales be sufficiently larger than the bulk correlation length ξb = 1/2τ and for the

SOS model length scales need to be sufficiently larger than the SOS lattice spacing.

Therefore, for T < Tw, one requires that the wetting-layer thickness, ), defined by

the expectation ) = limx→∞ E Yx/2, also be sufficiently large. So, for temperatures

T < Tw, this interfacial description is valid provided T be sufficiently close to Tw.

For the Ising model this means that w − 1 must be sufficiently small when positive

and similarly for a− 1
κ

in the SOS model. However, for T > Tw, the only restriction

on T is that it be less than the bulk critical temperature Tc (which for the SOS

model is effectively infinite).

Given Eq. (13), it is tempting to regard the interface model, quantum mechan-

ically, as describing a Euclidean Schrödinger particle of mass τ̃ moving on the half

line y ≥ 0 subject to a “potential” cδ0(y). In doing so one needs to be clear on the

effect of the boundary at y = 0 when c = 0. In other words, what is the underlying

Markov process perturbed by the δ function? The answer is reflected Brownian mo-

tion since Pc=0
x is clearly the probability measure for tied-down reflected Brownian

motion.
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3.2 Family of Finite-Dimensional Distributions

It will prove useful to describe the family of finite-dimenional distributions which

can be uniquely extended to the measure Pc
x (on the infinite-dimensional space Ωx)

presented in Subsection 3.1. Consider the cylinder set {Aj ⊂ [0,∞)}nj=1 for all

n ≥ 1. Then the family of finite-dimensional distributions can be expressed as

Pc
x(Ωx|Yx1 ∈ A1, . . . , Yxn ∈ An) =

∫
A1

dy1 . . .
∫
An

dyn px,n(x1, y1; . . . ; xn, yn) (17)

where 0 < x1 < · · · < xn < x and px,n(·) is the joint probability density function

given by

px,n(x1, y1; . . . ; xn, yn) =
K(x1; 0, y1)K(x− xn; yn, 0)

K(x; 0, 0)

n∏
j=2

K(xj −xj−1; yj−1, yj) (18)

with K(·) defined by the path integral

K(u; y0, y) :=
∫

dµ
(u,y)
(0,y0)

e−2cLu . (19)

By applying Dirichtet-form techniques [16, 17], the path integral K(·) can be shown

to satisfy a Feynman-Kac formula in terms of the kernel of an evolution operator

e−uĤc through

K(u; y0, y) =
(
kernel e−uĤc

)
(y0, y) (20)

where Ĥc is the operator on L2([0,∞)) given by

Ĥc =
−1

2τ̃
∆N + cδ0 (21)

with δ0 being the Dirac measure at 0 and ∆N the one-dimensional Neumann Lapla-

cian, (∆Nψ)(y) = ψ′′(y) with ψ′(0) = 0. The spectrum of Ĥc can be determined

by treating the term cδ0 as a rank-1 perturbation on −∆N/2τ̃ [18] and, hence, K(·)
can be expressed in spectral form [19]

K(u; y0, y) = Θ(−c)4τ̃ |c|e2τ̃ c2ue−2τ̃ |c|(y0+y) (22)

+
∫ ∞

−∞
dω

2π
e−ω2u/2τ̃

[
eiω(y0−y) −

(
2τ̃ c + iω

2τ̃ c− iω

)
eiω(y0+y)

]
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where Θ(·) is the Heaviside step function. Note that the first term in the RHS of

(22) is due to the single bound state of Ĥc present whenever c < 0 but absent for

all c ≥ 0.

4 Brief Outline of the Analysis

The continuous interface model, specified by Pc
x, was constructed from the underly-

ing microscopic models by applying the Kolmogorov extension theorem [13] which in

the present context states the following: the consistent family of finite-dimensional

distributions given by the joint probability densities {px,n(·)}n≥1 implies the ex-

istence and uniqueness of the measure Pc
x on the infinite-dimensional space Ωx.

Therefore, our strategy is clear; for a given microscopic model one computes the joint

probabilities for the interface (long contour) passing through any number (n ≥ 1)

of points on a sufficiently large scale. If these joint probabilities can be expressed in

the form given by combining Eqs. (18) and (22) then this implies that the measure

Pc
x uniquely provides the appropriate “continuum” description. We now sketch out

how these joint probabilities were determined for each lattice model.

4.1 Ising Model

We start by considering joint probabilities of lattice-contour events evaluated in

terms of the (horizontal) bond energy defined as Em,n := σm,nσm+1,n so that Im,n :=

(1−Em,n)/2 is the indicator for a Peierls contour vertically crossing the bond joining

(m,n) to (m+ 1, n). Let j ∈ X denote the lattice site (xj , yj) where X is the index

set X := {1, . . . , n} (and n in X is not to be confused with the vertical lattice

coordinate in (m,n)). Then, by introducing the notations EX :=
∏

j∈X Ej and

IX :=
∏

j∈X Ij , the joint probability of Peierls contours vertically crossing bonds

at {(xj + 1
2
, yj)}j∈X, with boundary condition b = A,B, is given by the canonical
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expectation 〈IX〉b (where, throughout, the limits N,M → ∞ have already been

taken). In the presence of a long contour, the probability 〈IX〉B can be shown to be

given by

〈IX〉B =
∑

X′⊆X

(−1/2)|X
′|〈EX′〉conB 〈IX\X′〉A (23)

where |X ′| is the cardinality of the set X ′ and the sum includes the empty set, ∅,
with the convention I∅ = E∅ = 1. Also, 〈EX′〉conB is the connected and rooted |X ′|-
point bond-energy correlation function, truncated so that 〈EX′〉conB → 0 whenever

max{|xj|, |xj − x|}j∈X′ → ∞. Unlike 〈IX〉B, the joint probability 〈IX〉A is transla-

tionally invariant in the x direction, i.e., invariant under {xj}∀j∈X �→ {xj + u}∀j∈X,

and can be written

〈IX〉A =
∑

�∈P(X)

∏
P∈�

〈IP 〉TA with 〈IP 〉TA = (−1/2)|P |〈EP 〉TA (24)

where P(X) is the set of all partitions of X, 3 = {P1, . . . , P|�|} is an element of

P(X), P is an element of 3 of P(X) and 〈IP 〉TA and 〈EP 〉TA denote the truncated

|P |-point functions.

Now, the joint probability 〈IX〉B contains contributions coming from the long

contour passing through all, some or none of the points in X with closed cycles,

disconnected from the long contour, passing through the remaining points. If the

points in X are sufficiently well separated then the terms in (23) can be understood

as follows: (−1/2)|X
′|〈EX′〉conB is the probability (up to an unimportant prefactor)

of the long contour passing through all the points in X ′ ⊆ X whereas 〈IX\X′〉A
is the probability of contours disconnected from the long contour passing through

the points in X\X ′. This identification is clear from the truncation properties of

〈EX′〉conB and the translational invariance of 〈IX\X′〉A (which is dominated by small

bulk-like bubbles passing through the points in X\X ′). Furthermore, 〈IP 〉TA in (24)

is dominated by the probability of a single closed contour passing through all the

12



points in P from which one can extract a large-deviations rate functional of Wulff

type.

So, on a large enough scale, the joint probabilities can be obtained from the trun-

cated n-point bond-energy correlation functions, 〈EX〉TA and 〈EX〉conB , which can be

evaluated exactly using transfer-matrix methods [20]. The results can be framed in

terms of path summations as follows [11]. Let Γ(X) = {[i1, i2], [i2, i3], . . . , [in−1, in]}
be the path defined as a sequence of line elements (with [ij , ij+1] connecting the two

lattice sites at ij and ij+1) where {i1, . . . , in} is some permutation of X. If Γr(X) is

the rooted path with i1 (respectively in) connected to the lattice site (0, 0) [respec-

tively (x, 0)] then 〈EX〉conB can be expressed as a sum over all distinct rooted paths

Γr(X) with each term in the sum corresponding to a different way the long contour

can pass through the n points in X. Similarly, 〈EX〉TA can be expressed as a sum

over all distinct closed circuits Γc(X) = {Γ(X), [in, i1]}.
On a large scale, the path sum for 〈EX〉conB is dominated by the directed path,

i.e., Γr(X) having 0 < xi1 < xi2 < · · · < xin < x, with all other paths, containing

overhangs, being subdominant by a factor of O(e−�oh/ξb) where )oh is the total excess

length of the overhangs in the x direction. To suppress these overhangs one requires

that |xk − xj | � ξb for all {j, k} ⊂ X and in this limit, with w − 1 close to zero

when positive, one can show that (−1/2)|X|〈EX〉conB reduces to the product given by

(18) with (22).

4.2 SOS Model

Here, the family of finite-dimensional distributions is given by Qx([0,∞)1+x|Yx1 ∈
A1, . . . , Yxn ∈ An), where {x1, . . . , xn} ⊂ {1, . . . , x− 1}, which can be exactly eval-

uated using the transfer-integral methods of Ref. [12]. One then applies standard

asymptotic methods to the resulting expression for large x with xj+1−xj � 1 and we
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keep a− 1/κ small when positve. This leads asymptotically to the joint probability

density function given by (18) where K(·) is given by (22).

5 Conclusions and Discussion

Using exact methods we have confirmed that a “continuous interface model” de-

scribes wetting in the two-dimensional Ising model (and a corresponding lattice

SOS model). In the continuum limit, the interfacial path is distributed as a Brown-

ian motion off a reflecting barrier containing a Dirac δ perturbation. One needs to

be on sufficiently large length scales (with T sufficiently close to Tw when T < Tw)

to get a well defined continuous interface model; i.e., we require that all lengths

(including the mean thickness of the wetting layer) be sufficiently larger than the

bulk correlation length ξb for the Ising model and sufficiently larger than 1 (in units

of lattice spacing) for the SOS model. All properties of critical wetting (associated

with the long contour) in the asymptotic scaling regime (such as, e.g., the scaling

limit of the complete hierarchy of the n-point correlation functions) are contained

within Pc
x.

Our resulting interface “potential” is not a function of the type given in Eq. (2)

but rather a Dirac δ distribution supported on the substrate — indeed, the exact

Ising analysis indicates that, on lengths scales of the required size needed to get a

well defined interface model, a distribution-valued potential is all one could hope to

find. However, on these scales the potential (2) converges in some sense to something

resembling a δ distribution [21] although this approach is unlikely to determine the

parameter c exactly nor does it explain why the substrate is a reflecting barrier if

and only if T = Tw. One could still question whether potentials given by (2) should

be applied to critical wetting in d = 2 bearing in mind that nonlinear functional

renormalization group (NFRG) studies [7, 10] starting from such models do just
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that and the results are then compared to exact Ising solutions. This is used as an

important test on the accuracy of the NFRG method which is principally directed

to the more elusive case of d = 3. We finish with some additional remarks.

(i) For c < 0, the wetting layer thickness is given by ) = 1/4τ̃ |c| and therefore

2cLx in (10) can be re-written as −Lx/2τ̃ ). From this it follows that the measure

Pc
x is manifestly invariant under the scale transformation ) �→ b), x �→ b2x and

Ys �→ bYb2s. This means that as ) gets arbitrarily large (T arbitrarily close to Tw

from below), one can continue to coarse-grain to an arbitrarily large intermediate

scale, provided it is much smaller than ), without changing the form of the interface

model. This cannot be said of V (y) given by (2) whose range is set by ξb.

(ii) The expectation λ := limx→∞ ELx/x provides a measure of the average

proportion of the substrate staying close to the interface in the thermodynamic

limit. It follows from (11) and (14) that 2λ = ∂τ×/∂c from which we have that

λ = 2τ̃ |c| for c < 0 and λ = 0 for c > 0. Hence, we can see that no matter how

close one is to the wetting transition for T < Tw, some proportion of the interface

(which gets vanishingly small as T ↑ Tw) will stay close to the substrate and this

recurrent property of the interface [22] is not evident from looking at the wetting

layer thickness (where ) → ∞ as T ↑ Tw) alone. In the mean-field picture, ) sits

in the minimum of V (y) given by (2) which diverges like ln(Tmf
w − T )−1 as T ↑ Tmf

w

with no account taken of recurrent events.

(iii) For wetting in the planar Ising model in the presence of a bulk magnetic field,

the interface model can be used to make some exact scaling-limit predictions. On

length scales larger than ξb, a positive magnetic field h (in units of kBT ) couples to

the total magnetisation difference as given by the area enclosed under the interface.

Therefore, defining h̄ = 2m∗h (where m∗ > 0 is the spontaneous magnetisation and

h is vanishingly small) the factor exp
(
−h̄

∫ x
0 Ys ds

)
is included in the expression for
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Pc
x in (10) and the partition function (11) is similarly modified so that Pc

x(Ωx) = 1.

¿From this follows the scaling behaviour

τ×(c, h)− τ = −Υ(2τ̃ cξh)/2τ̃ ξ
2
h with ξh := (4τ̃m∗h)−1/3 (25)

and the scaling function Υ(z) is defined implicitly through Ai′(Υ) = zAi(Υ) where

Ai(·) is the Airy function. This scaling behaviour was found in Ref. [12] for the

SOS model but we claim that it also holds in the scaling limit (T → T±
w and h ↓ 0)

for the Ising model after putting c = (1 − w)/2τ̃ . Also, defining λ = λ(c, h) as in

Remark (ii), we have 2λ(c, h) = −Υ′(2τ̃ cξh)/ξh.
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